Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.205
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 47, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532508

RESUMO

Sturge-Weber syndrome (SWS), a neurocutaneous disorder, is characterized by capillary malformations (CM) in the skin, brain, and eyes. Patients may suffer from seizures, strokes, and glaucoma, and only symptomatic treatment is available. CM are comprised of enlarged vessels with endothelial cells (ECs) and disorganized mural cells. Our recent finding indicated that the R183Q mutation in ECs leads to heightened signaling through phospholipase Cß3 and protein kinase C, leading to increased angiopoietin-2 (ANGPT2). Furthermore, knockdown of ANGPT2, a crucial mediator of pro-angiogenic signaling, inflammation, and vascular remodeling, in EC-R183Q rescued the enlarged vessel phenotype in vivo. This prompted us to look closer at the microenvironment in CM-affected vascular beds. We analyzed multiple brain histological sections from patients with GNAQ-R183Q CM and found enlarged vessels devoid of mural cells along with increased macrophage-like cells co-expressing MRC1 (CD206, a mannose receptor), CD163 (a scavenger receptor and marker of the monocyte/macrophage lineage), CD68 (a pan macrophage marker), and LYVE1 (a lymphatic marker expressed by some macrophages). These macrophages were not found in non-SWS control brain sections. To investigate the mechanism of increased macrophages in the perivascular environment, we examined THP1 (monocytic/macrophage cell line) cell adhesion to EC-R183Q versus EC-WT under static and laminar flow conditions. First, we observed increased THP1 cell adhesion to EC-R183Q compared to EC-WT under static conditions. Next, using live cell imaging, we found THP1 cell adhesion to EC-R183Q was dramatically increased under laminar flow conditions and could be inhibited by anti-ICAM1. ICAM1, an endothelial cell adhesion molecule required for leukocyte adhesion, was strongly expressed in the endothelium in SWS brain histological sections, suggesting a mechanism for recruitment of macrophages. In conclusion, our findings demonstrate that macrophages are an important component of the perivascular environment in CM suggesting they may contribute to the CM formation and SWS disease progression.


Assuntos
Capilares/anormalidades , Síndrome de Sturge-Weber , Malformações Vasculares , Humanos , Síndrome de Sturge-Weber/genética , Síndrome de Sturge-Weber/patologia , Síndrome de Sturge-Weber/terapia , Células Endoteliais/metabolismo , Capilares/patologia , Macrófagos/metabolismo , Microambiente Tumoral , Proteínas de Transporte Vesicular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
2.
Nature ; 626(8001): 1141-1148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326620

RESUMO

The calcium-sensing receptor (CaSR) is a family C G-protein-coupled receptor1 (GPCR) that has a central role in regulating systemic calcium homeostasis2,3. Here we use cryo-electron microscopy and functional assays to investigate the activation of human CaSR embedded in lipid nanodiscs and its coupling to functional Gi versus Gq proteins in the presence and absence of the calcimimetic drug cinacalcet. High-resolution structures show that both Gi and Gq drive additional conformational changes in the activated CaSR dimer to stabilize a more extensive asymmetric interface of the seven-transmembrane domain (7TM) that involves key protein-lipid interactions. Selective Gi and Gq coupling by the receptor is achieved through substantial rearrangements of intracellular loop 2 and the C terminus, which contribute differentially towards the binding of the two G-protein subtypes, resulting in distinct CaSR-G-protein interfaces. The structures also reveal that natural polyamines target multiple sites on CaSR to enhance receptor activation by zipping negatively charged regions between two protomers. Furthermore, we find that the amino acid L-tryptophan, a well-known ligand of CaSR extracellular domains, occupies the 7TM bundle of the G-protein-coupled protomer at the same location as cinacalcet and other allosteric modulators. Together, these results provide a framework for G-protein activation and selectivity by CaSR, as well as its allosteric modulation by endogenous and exogenous ligands.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Receptores de Detecção de Cálcio , Humanos , Regulação Alostérica/efeitos dos fármacos , Cinacalcete/farmacologia , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ligantes , Lipídeos , Nanoestruturas/química , Poliaminas/metabolismo , Conformação Proteica/efeitos dos fármacos , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/ultraestrutura , Especificidade por Substrato , Triptofano/metabolismo , Cálcio/metabolismo
3.
Angew Chem Int Ed Engl ; 63(10): e202317805, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38238265

RESUMO

Heterotrimeric G proteins are key mediators in the signaling of G protein-coupled receptors (GPCR) that are involved in a plethora of important physiological processes and thus major targets of pharmaceutical drugs. The cyclic depsipeptides YM-254890 and FR900359 are strong and selective inhibitors of the Gq subfamily of G proteins. FR900359 was first reported to be produced by unculturable plant symbiont, however, a culturable FR900359 producer was discovered recently by the standard strategy, screening of the producing strain from the environment. As another strategy, we introduce herein the different way to supply natural compounds of unculturable microorganism origin. We therefore embarked on constructing an artificial biosynthetic gene cluster (BGC) for FR900359 with YM-254890 BGC as a template using "in vitro module editing" technology, first developed for the modification of type-I PKS BGCs, to edit YM-254890 BGC. The resulting artificial BGCs coding FR900359 were heterologously expressed in the Pseudomonas putida KT2440 host strain.


Assuntos
Antineoplásicos , Depsipeptídeos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Depsipeptídeos/química , Receptores Acoplados a Proteínas G/metabolismo
4.
J Med Chem ; 67(2): 1447-1459, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38198520

RESUMO

Uveal melanoma (UM) is the most common primary intraocular malignancy in the adult eye. Despite the aggressive local management of primary UM, the development of metastases is common with no effective treatment options for metastatic disease. Genetic analysis of UM samples reveals the presence of mutually exclusive activating mutations in the Gq alpha subunits GNAQ and GNA11. One of the key downstream targets of the constitutively active Gq alpha subunits is the protein kinase C (PKC) signaling pathway. Herein, we describe the discovery of darovasertib (NVP-LXS196), a potent pan-PKC inhibitor with high whole kinome selectivity. The lead series was optimized for kinase and off target selectivity to afford a compound that is rapidly absorbed and well tolerated in preclinical species. LXS196 is being investigated in the clinic as a monotherapy and in combination with other agents for the treatment of uveal melanoma (UM), including primary UM and metastatic uveal melanoma (MUM).


Assuntos
Melanoma , Neoplasias Uveais , Adulto , Humanos , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação
5.
Bioorg Chem ; 143: 107005, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043397

RESUMO

Uveal melanoma (UM) represents the predominant ocular malignancy among adults, exhibiting high malignancy and proclivity for liver metastasis. GNAQ and GNA11 encoding Gαq and Gα11 proteins are key genes to drive UM, making the selective inhibition of Gαq/11 proteins to be a potential therapeutic approach for combating UM. In this study, forty-six quinazoline derivatives were designed, synthesized, and assessed for their ability to inhibit Gαq/11 proteins and UM cells. Compound F33 emerged as the most favorable candidate, and displayed moderate inhibitory activity against Gαq/11 proteins (IC50 = 9.4 µM) and two UM cell lines MP41 (IC50 = 6.7 µM) and 92.1 (IC50 = 3.7 µM). Being a small molecule inhibitor of Gαq/11 proteins, F33 could effectively suppress the activation of downstream signaling pathways in a dose-dependent manner, and significantly inhibits UM in vitro.F33 represents a promising lead compound for developing therapeutics for UM by targeting Gαq/11 proteins.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Melanoma/patologia , Transdução de Sinais , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Linhagem Celular Tumoral
6.
Oncoimmunology ; 12(1): 2261278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126027

RESUMO

Uveal melanoma (UM) is the most common ocular malignancy in adults. Nearly 95% of UM patients carry the mutually exclusive mutations in the homologous genes GNAQ (amino acid change Q209L/Q209P) and GNA11 (aminoacid change Q209L). UM is located in an immunosuppressed organ and does not suffer immunoediting. Therefore, we hypothesize that driver mutations in GNAQ/11 genes could be recognized by the immune system. Genomic and transcriptomic data from primary uveal tumors were collected from the TCGA-UM dataset (n = 80) and used to assess the immunogenic potential for GNAQ/GNA11 Q209L/Q209P mutations using a variety of tools and HLA type information. All prediction tools showed stronger GNAQ/11 Q209L binding to HLA than GNAQ/11 Q209P. The immunogenicity analysis revealed that Q209L is likely to be presented by more than 73% of individuals in 1000 G databases whereas Q209P is only predicted to be presented in 24% of individuals. GNAQ/11 Q209L showed a higher likelihood to be presented by HLA-I molecules than almost all driver mutations analyzed. Finally, samples carrying Q209L had a higher immune-reactive phenotype. Regarding cancer risk, seven HLA genotypes with low Q209L affinity show higher frequency in uveal melanoma patients than in the general population. However, no clear association was found between any HLA genotype and survival. Results suggest a high potential immunogenicity of the GNAQ/11 Q209L variant that could allow the generation of novel therapeutic tools to treat UM like neoantigen vaccinations.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP , Neoplasias Uveais , Adulto , Humanos , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Neoplasias Uveais/genética , Neoplasias Uveais/terapia , Neoplasias Uveais/metabolismo , Mutação , Imunoterapia
7.
Anal Chem ; 95(45): 16692-16700, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37921444

RESUMO

Uveal melanoma (UM) is a rare ocular tumor characterized by high metastasis risk and poor prognosis. The in-depth characterization of UM's molecular profile is critical for better disease classification and prognosis. Furthermore, the development of detection tools to monitor UM evolution upon treatment is of great interest for designing optimal therapeutic strategies. However, commonly used techniques, such as ddPCR or NGS, are costly, and they involve sophisticated equipment and complex experimental design. The development of alternative sensing methods that are fast, simple, and inexpensive would be of great benefit to improve UM's diagnosis and management, especially when combined with liquid biopsy. Samples from liquid biopsy can be obtained with minimal invasiveness, and the detection of circulating tumor DNA (ctDNA) in UM patients' plasma has proven useful for the diagnosis of metastasis, prognosis prediction, and disease monitoring. In this context, CRISPR/Cas12a-derived molecular sensors, thanks to their high specificity and sensitivity and their potential for point of care diagnosis, are particularly interesting. Here, we developed a CRISPR/Cas12a-based approach for the specific detection of the UM-related mutation GNAQ Q209P that relies on the design of highly specific crRNAs. Coupled with allele-specific PCR, it constitutes a sensitive platform for liquid biopsy detection, capable of sensing GNAQ Q209P in plasma samples with a low ctDNA concentration and fractional abundance. Finally, our method was validated using plasma samples from metastatic UM patients.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Subunidades alfa de Proteínas de Ligação ao GTP , Humanos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Sistemas CRISPR-Cas/genética , Mutação
8.
J Biol Chem ; 299(12): 105418, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923138

RESUMO

Most uveal melanoma cases harbor activating mutations in either GNAQ or GNA11. Despite activation of the mitogen-activated protein kinase (MAPK) signaling pathway downstream of Gαq/11, there are no effective targeted kinase therapies for metastatic uveal melanoma. The human genome encodes numerous understudied kinases, also called the "dark kinome". Identifying additional kinases regulated by Gαq/11 may uncover novel therapeutic targets for uveal melanoma. In this study, we treated GNAQ-mutant uveal melanoma cell lines with a Gαq/11 inhibitor, YM-254890, and conducted a kinase signaling proteomic screen using multiplexed-kinase inhibitors followed by mass spectrometry. We observed downregulated expression and/or activity of 22 kinases. A custom siRNA screen targeting these kinases demonstrated that knockdown of microtubule affinity regulating kinase 3 (MARK3) and serine/threonine kinase 10 (STK10) significantly reduced uveal melanoma cell growth and decreased expression of cell cycle proteins. Additionally, knockdown of MARK3 but not STK10 decreased ERK1/2 phosphorylation. Analysis of RNA-sequencing and proteomic data showed that Gαq signaling regulates STK10 expression and MARK3 activity. Our findings suggest an involvement of STK10 and MARK3 in the Gαq/11 oncogenic pathway and prompt further investigation into the specific roles and targeting potential of these kinases in uveal melanoma.


Assuntos
Melanoma , Proteínas Serina-Treonina Quinases , Neoplasias Uveais , Humanos , Linhagem Celular Tumoral , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Melanoma/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/enzimologia , Neoplasias Uveais/genética
9.
Cell Rep Med ; 4(11): 101244, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37858338

RESUMO

Uveal melanoma (UM) is the most prevalent cancer of the eye in adults, driven by activating mutation of GNAQ/GNA11; however, there are limited therapies against UM and metastatic UM (mUM). Here, we perform a high-throughput chemogenetic drug screen in GNAQ-mutant UM contrasted with BRAF-mutant cutaneous melanoma, defining the druggable landscape of these distinct melanoma subtypes. Across all compounds, darovasertib demonstrates the highest preferential activity against UM. Our investigation reveals that darovasertib potently inhibits PKC as well as PKN/PRK, an AGC kinase family that is part of the "dark kinome." We find that downstream of the Gαq-RhoA signaling axis, PKN converges with ROCK to control FAK, a mediator of non-canonical Gαq-driven signaling. Strikingly, darovasertib synergizes with FAK inhibitors to halt UM growth and promote cytotoxic cell death in vitro and in preclinical metastatic mouse models, thus exposing a signaling vulnerability that can be exploited as a multimodal precision therapy against mUM.


Assuntos
Melanoma , Neoplasias Cutâneas , Neoplasias Uveais , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Inibidores de Proteínas Quinases/farmacologia
10.
Invest Ophthalmol Vis Sci ; 64(13): 35, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37862025

RESUMO

Purpose: Uveal melanoma (UM) is a tumor of the eye that metastasizes in approximately half of cases. Prognostic testing requires accessibility to tumor tissue, which is usually not available with eye-preserving therapies. Noninvasive approaches to prognostic testing that provide valuable information for patient care are therefore needed. The aim of this study was to evaluate the use of circulating cell-free plasma DNA analysis in UM patients undergoing brachytherapy. Methods: The study recruited 26 uveal melanoma patients referred to the department between February and October 2020. Blood samples were collected at various time points before, during, and after treatment, and deep amplicon sequencing was used to identify oncogenic variant alleles of the GNAQ and GNA11 genes, which serve as indicators for the presence of circulating tumor DNA (ctDNA). Results: The results showed that all patients were ctDNA negative before brachytherapy. In 31% of patients, ctDNA was detected during therapy. The variant allele fraction of GNAQ or GNA11 alleles in ctDNA positive samples ranged from 0.24% to 2% and correlates with the largest basal diameter and thickness of the tumor. Conclusions: The findings suggest that brachytherapy increases the presence of tumor DNA in the plasma of UM patients. Thus ctDNA analysis may offer a noninvasive approach for prognostic testing. However, efforts are still required to lower the limit of detection for tumor-specific genetic alterations.


Assuntos
DNA Tumoral Circulante , Neoplasias Uveais , Humanos , DNA Tumoral Circulante/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Análise Mutacional de DNA , Neoplasias Uveais/genética , Neoplasias Uveais/radioterapia , Neoplasias Uveais/diagnóstico , Mutação , DNA de Neoplasias/genética
11.
Mol Cell Proteomics ; 22(11): 100649, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37730182

RESUMO

Metastatic uveal melanoma (UM) patients typically survive only 2 to 3 years because effective therapy does not yet exist. Here, to facilitate the discovery of therapeutic targets in UM, we have identified protein kinase signaling mechanisms elicited by the drivers in 90% of UM tumors: mutant constitutively active G protein α-subunits encoded by GNAQ (Gq) or GNA11 (G11). We used the highly specific Gq/11 inhibitor FR900359 (FR) to elucidate signaling networks that drive proliferation, metabolic reprogramming, and dedifferentiation of UM cells. We determined the effects of FR on the proteome and phosphoproteome of UM cells as indicated by bioinformatic analyses with CausalPath and site-specific gene set enrichment analysis. We found that inhibition of oncogenic Gq/11 caused deactivation of PKC, Erk, and the cyclin-dependent kinases CDK1 and CDK2 that drive proliferation. Inhibition of oncogenic Gq/11 in UM cells with low metastatic risk relieved inhibitory phosphorylation of polycomb-repressive complex subunits that regulate melanocytic redifferentiation. Site-specific gene set enrichment analysis, unsupervised analysis, and functional studies indicated that mTORC1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 drive metabolic reprogramming in UM cells. Together, these results identified protein kinase signaling networks driven by oncogenic Gq/11 that regulate critical aspects of UM cell biology and provide targets for therapeutic investigation.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Neoplasias Uveais , Humanos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/farmacologia , Proliferação de Células , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Proteína Quinase C/metabolismo , Biologia Computacional , Mutação
12.
Cell Rep ; 42(9): 113151, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37713310

RESUMO

Loss of cognitive function with age is devastating. EGL-30/GNAQ and Gαq signaling pathways are highly conserved between C. elegans and mammals, and murine Gnaq is enriched in hippocampal neurons and declines with age. We found that activation of EGL-30 in aged worms triples memory span, and GNAQ gain of function significantly improved memory in aged mice: GNAQ(gf) in hippocampal neurons of 24-month-old mice (equivalent to 70- to 80-year-old humans) rescued age-related impairments in well-being and memory. Single-nucleus RNA sequencing revealed increased expression of genes regulating synaptic function, axon guidance, and memory in GNAQ-treated mice, and worm orthologs of these genes were required for long-term memory extension in worms. These experiments demonstrate that C. elegans is a powerful model to identify mammalian regulators of memory, leading to the identification of a pathway that improves memory in extremely old mice. To our knowledge, this is the oldest age at which an intervention has improved age-related cognitive decline.


Assuntos
Caenorhabditis elegans , Cognição , Humanos , Animais , Camundongos , Idoso , Pré-Escolar , Idoso de 80 Anos ou mais , Caenorhabditis elegans/metabolismo , Cognição/fisiologia , Transdução de Sinais/fisiologia , Neurônios/metabolismo , Memória/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Hipocampo/metabolismo , Envelhecimento/metabolismo , Mamíferos/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
13.
J Thromb Haemost ; 21(12): 3633-3639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657560

RESUMO

BACKGROUND: Most platelet agonists work through G protein-coupled receptors, activating pathways that involve members of the Gq, Gi, and G12/G13 families of heterotrimeric G proteins. Gq signaling has been shown to be critical for efficient platelet activation. Growing evidence suggests that regulatory mechanisms converge on G protein-coupled receptors and Gq to prevent overly robust platelet reactivity. OBJECTIVES: To identify and characterize mechanisms by which Gq signaling is regulated in platelets. METHODS: Based on our prior experience with a Gαi2 variant that escapes regulation by regulator of G protein signaling (RGS) proteins, a Gαq variant was designed with glycine 188 replaced with serine (G188S) and then incorporated into a mouse line so that its effects on platelet activation and thrombus formation could be studied in vitro and in vivo. RESULTS AND CONCLUSIONS: As predicted, the G188S substitution in Gαq disrupted its interaction with RGS18. Unexpectedly, it also uncoupled PLCß-3 from activation by platelet agonists as evidenced by a loss rather than a gain of platelet function in vitro and in vivo. Binding studies showed that in addition to preventing the binding of RGS18 to Gαq, the G188S substitution also prevented the binding of PLCß-3 to Gαq. Structural analysis revealed that G188 resides in the region that is also important for Gαq binding to PLCß-3 in platelets. We conclude that the Gαq signaling node is more complex than that has been previously understood, suggesting that there is cross-talk between RGS proteins and PLCß-3 in the context of Gαq signaling.


Assuntos
Plaquetas , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Proteínas RGS , Animais , Camundongos , Plaquetas/metabolismo , Ativação Plaquetária/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transdução de Sinais , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
14.
Nature ; 620(7974): 676-681, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532940

RESUMO

Phosphorylation of G-protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) desensitizes G-protein signalling and promotes arrestin signalling, which is also modulated by biased ligands1-6. The molecular assembly of GRKs on GPCRs and the basis of GRK-mediated biased signalling remain largely unknown owing to the weak GPCR-GRK interactions. Here we report the complex structure of neurotensin receptor 1 (NTSR1) bound to GRK2, Gαq and the arrestin-biased ligand SBI-5537. The density map reveals the arrangement of the intact GRK2 with the receptor, with the N-terminal helix of GRK2 docking into the open cytoplasmic pocket formed by the outward movement of the receptor transmembrane helix 6, analogous to the binding of the G protein to the receptor. SBI-553 binds at the interface between GRK2 and NTSR1 to enhance GRK2 binding. The binding mode of SBI-553 is compatible with arrestin binding but clashes with the binding of Gαq protein, thus providing a mechanism for its arrestin-biased signalling capability. In sum, our structure provides a rational model for understanding the details of GPCR-GRK interactions and GRK2-mediated biased signalling.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G , Receptores Acoplados a Proteínas G , Transdução de Sinais , Arrestinas/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/biossíntese , Quinase 2 de Receptor Acoplado a Proteína G/química , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Ligantes , Ligação Proteica , Receptores de Neurotensina/metabolismo
15.
J Biol Chem ; 299(8): 105020, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423300

RESUMO

Mammalian type opsin 5 (Opn5m), a UV-sensitive G protein-coupled receptor opsin highly conserved in vertebrates, would provide a common basis for UV sensing from lamprey to humans. However, G protein coupled with Opn5m remains controversial due to variations in assay conditions and the origin of Opn5m across different reports. Here, we examined Opn5m from diverse species using an aequorin luminescence assay and Gα-KO cell line. Beyond the commonly studied major Gα classes, Gαq, Gα11, Gα14, and Gα15 in the Gq class were individually investigated in this study, as they can drive distinct signaling pathways in addition to a canonical calcium response. UV light triggered a calcium response via all the tested Opn5m proteins in 293T cells, which was abolished by Gq-type Gα deletion and rescued by cotransfection with mouse and medaka Gq-type Gα proteins. Opn5m preferentially activated Gα14 and close relatives. Mutational analysis implicated specific regions, including α3-ß5 and αG-α4 loops, αG and α4 helices, and the extreme C terminus, in the preferential activation of Gα14 by Opn5m. FISH revealed co-expression of genes encoding Opn5m and Gα14 in the scleral cartilage of medaka and chicken eyes, supporting their physiological coupling. This suggests that the preferential activation of Gα14 by Opn5m is relevant for UV sensing in specific cell types.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Opsinas , Humanos , Camundongos , Animais , Opsinas/genética , Opsinas/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Cálcio/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Opsinas de Bastonetes/metabolismo , Mamíferos/metabolismo
16.
Melanoma Res ; 33(5): 345-356, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467061

RESUMO

Uveal melanoma is the most common intraocular tumor in adults, representing approximately 5% of all melanoma cases. Up to 50% of uveal melanoma patients develop metastases that are resistant to most of the commonly used antineoplastic treatments. Virtually all uveal melanoma tumors harbor activating mutations in GNAQ or GNA11 , encoding Gαq and Gα11, respectively. Constant activity of these proteins causes deregulation of multiple downstream signaling pathways including PKC, MAPK and YAP1/TAZ. While the importance of YAP1 signaling for the proliferation of uveal melanoma has recently been demonstrated, much less is known about the paralog of YAP1 transcriptional coactivator, named TAZ; however, similar to YAP1, TAZ is expected to be a therapeutic target in uveal melanoma. We performed a small-scale drug screen to discover a compound synergistically inhibiting uveal melanoma proliferation/survival in combination with YAP1/TAZ inhibition. We found that the combination of genetic depletion of YAP1/TAZ together with Mcl-1 inhibition demonstrates a synergistic inhibitory effect on the viability of uveal melanoma cell lines. Similarly, indirect attenuation of the YAP1/TAZ signaling pathway with an inhibitor of the mevalonate pathway, that is, the geranyl-geranyl transferase inhibitor GGTI-298, synergizes with Mcl-1 inhibition. This combination could be potentially used as a treatment for metastatic uveal melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Neoplasias Uveais , Adulto , Humanos , Linhagem Celular Tumoral , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Neoplasias Uveais/genética
17.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240145

RESUMO

Epithelial-to-mesenchymal transition (EMT) plays a critical role in the development and progression of lung cancer by promoting its invasiveness and metastasis. Using integrative analyses of the public lung cancer database, we found that the expression levels of the tight junction proteins, zonula occluden (ZO)-1 and ZO-2, were lower in lung cancer tissues, including both lung adenocarcinoma and lung squamous cell carcinoma than in normal lung tissues analyzed using The Cancer Genome Atlas (TCGA). Although the ectopic expression or knockdown of ZO-1 and ZO-2 did not affect the growth of lung cancer cells, they significantly regulated cell migration and invasion. When M0 macrophages were co-cultured with ZO-1 or ZO-2 knockdown Calu-1 cells, M2-like polarization was efficiently induced. Conversely, co-culture of M0 THP-1 cells with A549 cells stably expressing ZO-1 or ZO-2 significantly reduced M2 differentiation. We also identified G protein subunit alpha q (GNAQ) as a potential ZO-1- and ZO-2-specific activator through analysis of correlated genes with the TCGA lung cancer database. Our results suggest that the GNAQ-ZO-1/2 axis may play a tumor-suppressive role in lung cancer development and progression and highlight ZO-1 and ZO-2 as key EMT- and tumor microenvironment-suppressive proteins. These findings provide new insights for the development of targeted therapies for lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Junções Íntimas/metabolismo , Microambiente Tumoral/genética , Neoplasias Pulmonares/genética , Transição Epitelial-Mesenquimal/genética , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
18.
Nat Commun ; 14(1): 1929, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024491

RESUMO

Activating non-inherited mutations in the guanine nucleotide-binding protein G(q) subunit alpha (GNAQ) gene family have been identified in childhood vascular tumors. Patients experience extensive disfigurement, chronic pain and severe complications including a potentially lethal coagulopathy termed Kasabach-Merritt phenomenon. Animal models for this class of vascular tumors do not exist. This has severely hindered the discovery of the molecular consequences of GNAQ mutations in the vasculature and, in turn, the preclinical development of effective targeted therapies. Here we report a mouse model expressing hyperactive mutant GNAQ in endothelial cells. Mutant mice develop vascular and coagulopathy phenotypes similar to those seen in patients. Mechanistically, by transcriptomic analysis we demonstrate increased mitogen activated protein kinase signaling in the mutant endothelial cells. Targeting of this pathway with Trametinib suppresses the tumor growth by reducing vascular cell proliferation and permeability. Trametinib also prevents the development of coagulopathy and improves mouse survival.


Assuntos
Melanoma , Neoplasias Uveais , Neoplasias Vasculares , Animais , Camundongos , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células Endoteliais/metabolismo , Apoptose , Melanoma/genética , Neoplasias Uveais/genética , Mutação , Modelos Animais de Doenças , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral
19.
Biol Pharm Bull ; 46(2): 309-319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724959

RESUMO

We examined whether the α1L-adrenoceptor (AR), which shows low affinity (pA2 < 9) for prazosin (an α1-AR antagonist) and high affinity (pA2 ≈ 10) for tamsulosin/silodosin (α1A-AR antagonists), is involved in phenylephrine-induced contractions in the guinea pig (GP) thoracic aorta (TA). Intracellular signaling induced by α1L-AR activation was also examined by focusing on Ca2+ influx pathways. Tension changes of endothelium-denuded TAs were isometrically recorded and mRNA encoding α-ARs/Ca2+ channels and their related molecules were measured using RT-quantitative PCR. Phenylephrine-induced contractions were competitively inhibited by prazosin/tamsulosin, and their pA2 value were calculated to be 8.53/9.74, respectively. These contractions were also inhibited by silodosin concentration-dependently. However, the inhibition was not competitive fashion with the apparent pA2 value being 9.48. In contrast, phenylephrine-induced contractions were not substantially suppressed by L-765314 (an α1B-AR antagonist), BMY 7378 (an α1D-AR antagonist), yohimbine, and idazoxan (α2-AR antagonists). Phenylephrine-induced contractions were markedly inhibited by YM-254890 (a Gq protein inhibitor) or removal of extracellular Ca2+, and partially inhibited by verapamil (a voltage-dependent Ca2+ channel (VDCC) inhibitor). The residual contractions in the presence of verapamil were slightly inhibited by LOE 908 (a receptor-operated Ca2+ channel (ROCC) inhibitor) and strongly inhibited by SKF-96365 (a store-operated Ca2+ channel (SOCC) and ROCC inhibitor). Among the mRNA encoding α-ARs/SOCC-related molecules, α1A-AR (Adra1a)/Orai3, Orai1, and Stim2 were abundant in this tissue. In conclusion, phenylephrine-induced contractions in the GP TA can be triggered by stimulation of Gq protein-coupled α1L-AR, followed by activation of SOCCs and VDCCs.


Assuntos
Antagonistas Adrenérgicos alfa , Aorta Torácica , Cobaias , Animais , Fenilefrina/farmacologia , Antagonistas Adrenérgicos alfa/metabolismo , Antagonistas Adrenérgicos alfa/farmacologia , Tansulosina/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Prazosina/farmacologia , Verapamil/farmacologia , Verapamil/metabolismo , RNA Mensageiro/metabolismo , Contração Muscular
20.
Pharmacol Res ; 188: 106660, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642112

RESUMO

Despite the unprecedented advancement of cancer treatment, the prognosis for patients with metastatic stage of cancer remains poor. The challenge that underlines this clinical dilemma is the complexity of metastasis. The conventional experiment-driven discovery approaches (the "wet lab") yield overly simplified one-to-one mechanistic relationships that are inept of elucidating the complexity of metastasis. Metastasis research also suffers from the knowledge and skill deficiency of the individual investigators. The importance of the present study is the demonstration that the "dry-lab-driven discovery and wet-lab validation" approach can improve the efficiency of studying complex biological behaviors, and can yield more reliable, objective and comprehensive mechanistic findings that are have clinical significance. Specifically, we applied this approach to study the mechanisms that underline the involvement of exosomal miRNAs in transferring the metastatic capability between heterogenous melanoma cancer cells. We show that the highly metastatic melanoma tumor cells (POL) can transfer their metastatic competency to the low-metastatic melanoma tumor cells (OL) by exosomal miR-211-5p. The oncogenic activity of miR-211-5p is mediated by the target gene guanine nucleotide-binding protein subunit alpha-15 (GNA15) through modifying the immune function of the tumor microenvironment extrinsically; as well as through inhibiting pyroptosis and augmenting glycolysis within OL cells intrinsically. In addition, we show that exosomal sorting of miR-211-5p is like selective and is subjected to regulation by a transcriptional feedback loop between miR-211-5p and zinc finger FYVE-type containing 26 (ZFYVE26). Furthermore, the "8-genes pyroptosis Risk model" derived from LASSO regression analysis was verified as an independent prognostic factor for melanoma.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Melanoma , MicroRNAs , Microambiente Tumoral , Humanos , Glucose , Melanoma/metabolismo , Melanoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Piroptose , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...